首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   8篇
地球物理   23篇
地质学   79篇
海洋学   13篇
天文学   18篇
自然地理   28篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   13篇
  2006年   7篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有171条查询结果,搜索用时 78 毫秒
51.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   

52.
We present the results of our subarcsecond resolution interferometricobservations of the 1.3 mm CO J = 21 line in the luminous merger NGC6240. Roughly half of the CO flux is contained in a rotating and highlyturbulent thick disk centered between the two radio and near-infrarednuclei. In this disk the molecular gas has velocity widths which reachFWZP line widths of up to 1000 km s-1. The mass of this gasconcentration makes up between 30%–70% of the dynamical mass in thisregion. NGC 6240 may be in an earlier merging stage than typical ULIRGssuch as Arp 220. We compare these results from NGC 6240 with thoseof other luminous, gas-rich interacting galaxies and mergers.  相似文献   
53.
ABSTRACT

In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013–2022 with the theme “Panta Rhei: Change in Hydrology and Society”. The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013–2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   
54.
The creamy-white deposit in the stream bed below Silica Springs outlet on Mount Ruapehu, Tongariro National Park, New Zealand, has been identified as a hydrous, X-ray-amorphous, aluminosilicate (allophane). The SiO2/Al2O3 mole ratio varies from close to one, to close to two. The elements K, Ca, Mn and Fe are present in low concentrations relative to those in allophanic soil clays, and tend to increase in concentration downstream from where the deposit first occurs. The concentration of S decreases downstream from 0.5% to 0.1%. Surface areas of samples, measured by the ethylene glycol desorption method, are about 200–300 m2/g. The outlet water at Silica Springs contains low dissolved solids and is undersaturated with respect to amorphous silica, but is supersaturated with respect to several alumino-silicate minerals (of which allophane may be considered the precursor) and with respect to CO2. Gas bubbling at the outlet contains about 10% CO2 which has a δC13PDB value of ?7.5%..Silica Springs water is derived from the addition of geothermal CO2 (and possibly H2S) to near-surface meteoric water from the lava flow above the outlet, and the chemical attack of this water on the andesitic rocks and soil through which it passes. The pH of water at Silica Springs increases from 5.45 at the outlet, to 5.90 where deposition first occurs, to 6.80 below the region of maximum deposition. This rise in pH correlates with loss of excess CO2 in turbulent regions of the stream, and, through surface charge effects, is probably an important influence on the site of deposition, which begins approx. 100m downstream from the outlet.  相似文献   
55.
Cleaning of lake sediment samples for diatom oxygen isotope analysis   总被引:1,自引:0,他引:1  
Detrital grain contamination in a diatom sample can considerably influence the δ18Odiatom signal. In order to obtain a meaningful signal, pure samples must be used. This can be achieved via a series of cleaning stages including organic and carbonate material removal, sieving, differential settling and heavy liquid separation. The method described here works best for sediments with >20% diatom content. Based on testing various clean-up methods, we propose a sequence of four clean-up stages to produce pure diatom samples from a range of lake sediments types starting with a few grams of sediment. The diatom content and the oxygen isotope composition of the samples at each stage were measured in order to assess the effect of differential amounts of contamination. Results show that a four stage clean-up is necessary to produce clean diatom samples and that contamination by silt and clay causes lower δ18O values.  相似文献   
56.
57.
58.
Felsic volcanic units of the Early Devonian Bindook Volcanic Complex host the Yerranderie epithermal silver–gold–lead district 94 km west–southwest of Sydney. Mineralization in the district forms part of a fault‐controlled, intermediate sulfidation, epithermal silver–gold–base metal vein system that has significant mineral and alteration zonation. Stage 1 of the mineral paragenesis in the veins developed quartz and carbonate with early pyrite, whereas stage 2 is a crustiform banded quartz–pyrite–arsenopyrite assemblage. Stage 3, the main stage of sulfide deposition, comprises early sphalerite, followed by a tetrahedrite–tennantite–gold assemblage, then a galena–chalcopyrite–native silver–pyrite assemblage, and finally a pyrargyrite–polybasite–pearceite assemblage. Stage 4 involves the deposition of quartz veins with minor (late) pyrite and stage 5 is characterized by siderite that infilled remaining voids. Mineral zonation occurs along the Yerranderie Fault, with bornite being restricted to the Colon Peaks–Silver Peak mine area, whereas arsenopyrite, which is present in both the Colon Peaks–Silver Peak and Wollondilly mine areas, is absent in other lodes along the Yerranderie Fault. The Yerranderie Fault, which hosts the major lodes, is surrounded by a zoned alteration system. With increasing proximity to the fault the intensity of alteration increases and the alteration assemblage changes from an outer quartz–muscovite–illite–(ankerite) assemblage to a quartz–illite–(pyrite–carbonate) assemblage within meters of the fault. 40Ar/39Ar dating of muscovite from the alteration zone gave a 372.1 ± 1.9 Ma (Late Devonian) age, which is interpreted to be the timing of the quartz–sulfide vein formation. Sulfur isotope values for sulfides range from 0.1 to 6.2‰ with one outlier of ?5.6 δ34S‰. The results indicate that the initial ore‐forming fluids were reduced, and that sulfur was probably sourced from a magmatic reservoir, either as a direct magmatic contribution or indirectly through dissolution and recycling of sulfur from the host volcanic sequence. The sulfur isotope data suggest the system is isotopically zoned.  相似文献   
59.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   
60.
Cladoceran microfossil remains were analysed from a sediment core taken from a lake basin at Kråkenes, western Norway. The sequence included immediate post-glacial conditions (ca. 12,300 14C BP), the Allerod, Younger Dryas, and early Holocene to approximately 8,500 14C BP. The interpretation of changes in the cladoceran assemblages is based on the known ecology of the taxa, the documented environmental history of the study sequence, the variations in the organic content of the sediment, the radiocarbon dates, and the results of analyses of other biotic groups, including diatoms, macrophytes, and chironomids. In addition, a quantitative reconstruction of changes in air temperature is presented for the study period. This reconstruction is based on transfer functions developed from a separate Swiss surface-sediment cladoceran data set.The cladoceran assemblages throughout the sequence are dominated by littoral chydorid taxa. Bosmina, Daphnia, and Simocephalus represent the open-water component of the zooplankton. Chydorus piger and Daphnia were the only immediate post-glacial pioneer taxa. A rapid proliferation of the open-water and littoral cladoceran taxa began with the onset of the Allerod and persisted for approximately 1,000 yrs. At the start of the Younger Dryas a local glacier formed and drained into the lake, causing a sudden decline in chydorid diversity, with only Chydorus sphaericus and Acroperus harpae persisting throughout this period. Chydorid diversity started to recover in the upper Younger Dryas and continued in the early Holocene. Progressive acidification and oligotrophication are also discernible from the cladoceran assemblages present in the Holocene.The reconstructed mean summer air temperature was from 8-21 °C, with prediction errors of 1.8-2.5 °C. The Allerod was only slightly warmer than the Younger Dryas period, but a progressive increase in temperature is apparent during the early Holocene. In conclusion, the results of this study provide a further demonstration of the value of cladocera as indicators of a variety of palaeoenvironmental parameters, including temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号